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Abstract

A generalised Amit-Roginsky vector model in flat space is obtained as the effective dynamics

of pertubations around a classical solution of the Boulatov group field theory for 3d euclidean

quantum gravity, extended to include additional matter degrees of freedom. By further restricting

the type of perturbations, the original Amit-Roginsky model can be obtained. This result suggests

a general link (and possibly a unified framework) between two types of tensorial quantum field

theories: quantum geometric group field theories and tensorial models for random geometry, on

one hand, and melonic-dominated vector and tensorial models in flat space, such as the Amit-

Roginsky model (and the SYK model), on the other hand.
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I. INTRODUCTION

Random matrix models [1–4] are, in their simplest formulation, 0-dimensional field the-

ories of an N × N (Hermitian) matrix Mij successfully employed to define 2-dimensional
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euclidean quantum gravity, based on the fact that their perturbative expansion generates a

sum over random surfaces weighted by purely combinatorial amplitudes corresponding to a

simplicial gravity path integral on the triangulation dual to each matrix Feynman diagram.

They have been generalized to matrix field theories in flat space, by the addition of suitable

flat space coordinates, and used to describe, for example, large-N regimes of non-abelian

gauge theories. Both finite matrix models and matrix field theories have found innumerable

applications in mathematical and theoretical physics.

A different kind of generalization is to define tensorial models producing, in their pertur-

bative expansion, a sum over higher-dimensional lattices. Tensorial models in d dimensions

are obtained by replacing the matrix field M by a tensor field with d indices Mij → Ti1..id

Such tensorial generalization was proposed already 30 years ago in a random geometry

context [5–7], and soon adapted to the quantum geometric one for the description of topo-

logical quantum field theories [8, 9], with 3d quantum gravity being a special case. The

same quantum geometric models, under the label of group field theories, became central

to formulate 4d quantum gravity in the context of spin foam models and canonical loop

quantum gravity [10–12]. In this quantum gravity context, both as purely combinatorial

random geometric models, and as richer quantum geometric ones, they represent nowadays

a very promising and quickly developing area of research [13–18]. The simplest example of

such quantum geometric tensorial field theories is the so-called Boulatov model [8], where

the rôle of the matrix indices is played here by group elements g1, g2, g3 ∈ SU(2). In these

theories, the tensors Ti1...id of simple tensor models are replaced by fields T (g1, ..., gd) on a

Lie group manifold Gd, having the local symmetries of gravitational theories in mind.

More recently, tensorial field theories have proven to define very rich and interesting

quantum field theories in flat space, again via the addition of suitable embedding coordinates;

in particular, they define new conformal field theories, with many potential applications, e.g.

to the AdS/CFT context [19, 20].

The key mathematical fact that spurred much development in these models was the

availability of analytic tools that allowed control over their perturbative expansion, despite

the combinatorial intricacies. Tensorial models, just like matrix models, admit a large

N expansion [21–27]. The leading order in the tensor large N expansion is given by a

particular family of Feynman graphs called the melonic graphs, which correspond to (special

triangulations of) spherical topology. This analytic control has made possible the wealth
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of results on the renormalization group flow, both perturbative and non-perturbative, of

tensorial field theories and group field theories [16, 28], as well as the statistical analysis of

critical behaviour [29, 30].

It is worth emphasizing here that the Sachdev-Ye-Kitaev (SYK) model [31, 32] also enjoys

the same melonic dominance in the large N limit [33], with N the number of fermionic fields

of the SYK model.

The Amit-Roginsky (AR) model [34] (see also [35]) describes a vector field theory whose

coupling constant is proportional to an SU(2) 3j-symbol. This model also has a large N

expansion and one can prove that it exhibits a melonic limit, just like tensor models, where

N = 2j + 1 is the dimension of the irreducible vector representation, and can thus be

understood as a special (and particularly simple) element of tensorial vector field theories.

Together, tensorial models of random and quantum geometry, and tensorial field theories

in flat space, can be seen as part of a broader framework of tensorial group field theo-

ries (TGFTs), sharing key mathematical features and techniques, while remaining flexible

enough to allow for a large variety of possible physical applications. However, the two classes

of models have remained quite separate, so far. The present work establishes the first explicit

link between them.

A crucial ingredient will be, from the quantum geometric side of the story, the addition

of matter degrees of freedom to the quantum geometric ones, also inspired by recent work on

the extraction of a relational cosmological dynamics from group field theory [36–38]. As a

candidate of quantum gravity, the inclusion of matter is of course crucial for TGFTs. Work

in this direction has followed two main routes, rather disconnected. On the one hand, non-

commutative scalar field theories have been extracted, by interpreting the Lie group domain

of quantum geometric models as a curved momentum space, as perturbations over classical

solutions of group field theories [39, 40], producing an ‘emergent matter’description from

the same quantum degrees of freedom having a pre-geometric interpretation. On the other

hand, matter degrees of freedom (or, maybe more properly, ‘pre-matter’degrees of freedom)

have been added to the quantum geometric ones, so to produce a lattice path integrals for

the coupling of gravity and matter at the level of the Feynman amplitudes of GFT models

[41–43]. These additional degrees of freedom are also instrumental for the definition of

relational observables with a local spacetime interpretation, in group field theory cosmology,

as mentioned. Both strategies turn out to be relevant for linking the quantum geometric
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Boulatov model to the Amit-Roginsky model, in this work, with the latter arising as the

effective dynamics of quantum geometric perturbations, but with the additional degrees of

freedom interpret as matter frames in the quantum geometric setting playing the role of flat

space coordinates in the resulting Amit-Rogisnky model.

In this paper, the classical solutions of the equation of motion of the Boulatov model

regularised via a heat-kernel approach are investigated. We exhibit an explicit solution of

these equations with the 3j symbol of SU(2) and study 2-dimensional perturbations around

this solution. We then give explicit conditions on these perturbations to give rise to an

AR-like effective action - with additional summation over spin indices with respect to the

original AR model. This shows that the AR model can be seen as a perturbation around

classical solutions of the Boulatov model, thus giving the anticipated explicit link between

two types of tensorial models.1

The paper is organised as follows. A brief review of the Boulatov model is given in

section II. In the following section we recall the definition of the AR model; then, we study

the condition on the perturbations of classical solutions of the equations of motion of the

Boulatov model necessary to recover an AR-like action as an effective action, which is then

explicitly derived. Section IV discusses the existence of a melonic dominance for our effective

action. While it is unsettled whether melonic dominance is preserved in the most general

setting, we exhibit additional conditions that ensure this property. Finally, we offer some

conclusions and perspectives.

II. BOULATOV MODEL

A. A short review on the Boulatov GFT model

Quantum geometric TGFTs, or GFTs, [14, 15, 45–47] are field theories whose dynamical

field depends on n points gi of a Lie group G. The group elements gi can be interpreted

as discrete parallel transports of a gravitational connection, i.e. of a G-vector bundle. The

1 We notice here that the possibility of deriving the AR vector model from perturbations over special

solutions of tensorial models was suggested also in [44]. A SO(3)-invariant classical solution in the form

of a 3j-symbol was identified for a O(N)3-symmetric tensor model in the large-N limit, corresponding to

an interesting pattern of symmetry breaking. Although the model considered in that paper is different

from the extended Boulatov TGFT model we analyse, and no direct quantum gravity interpretation is

immediately available, the general mechanism is quite similar to the one we study. A more in-depth

comparative analysis of the two settings would be very interesting.
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Boulatov model [8] is a 3D GFT model with field T (g1, g2, g3) : G
3 → C, where G = SU(2).

The field is invariant under

T (g1h, g2h, g3h) = T (g1, g2, g3) ∀h ∈ SU(2). (1)

and satisfies the reality condition [39]

T (g1, g2, g3) = T̄ (g3, g2, g1). (2)

The original Boulatov model [8] further requires cyclic symmetry in the group elements gi.

But this property plays no role in this paper, so we do not discuss it further.

The action of the Boulatov model is non-local and it writes [8]

S[T ] =
µ2

2

∫

dg1dg2dg3T (g1, g2, g3)T̄ (g1, g2, g3)

− λ

4!

∫ 6
∏

i=1

dgiT (g1, g2, g3)T (g3, g5, g4)T (g4, g2, g6)T (g6, g5, g1), (3)

where µ is the ‘mass’of the field (simply the coupling of the quadratic non-derivative term)

and λ is the coupling constant of the quartic interaction. The connection to simplicial ge-

ometries is elucidated by a suitable graphical interpretation of the elements in the action.

The field T (g1, g2, g3) represents a triangle, with three group elements associated with its

three edges, and the interaction contains four triangles glued along shared edges (thus shar-

ing the same group element) forming a tetrahedron, which is the building block of a 3D

simplicial lattice, likes those generated as dual to the Feynman diagrams of the model in its

perturbative expansion.

The equation of motion of the field T (g1, g2, g3) reads

µ2T (g3, g2, g1) =
λ

3!

∫

dg4dg5dg6T (g3, g5, g4)T (g4, g2, g6)T (g6, g5, g1). (4)

This provides a description of the GFT model in a group representation. By generalised

Fourier transforms, GFTs can also be written in terms of a spin representation.

As a function of SU(2)⊗3, the field T can be expanded in terms of Wigner matrices

Dji
mini

(gi) via the Peter-Weyl theorem [48, 49]. Considering the invariance (1), this decom-

position takes the form

T (g1, g2, g3) =
∑

{j,m,n}

Tm1m2m3

j1j2j3

3
∏

i=1

√

2ji + 1Dji
mini

(gi)





j1 j2 j3

n1 n2 n3



 , (5)
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with





j1 j2 j3

n1 n2 n3



 the Wigner’s 3j symbol of SU(2). The sum on {j} denotes the summa-

tion over j1, j2 and j3 (resp. for {m} and {n}). The coefficients Tm1m2m3

j1j2j3
can be computed

using the orthogonality of Wigner matrices as

Tm1m2m3

j1j2j3
=

∫

dg1dg2dg3
∑

{n}

T (g1, g2, g3)
3
∏

i=1

√

2ji + 1D̄ji
mini

(gi)





j1 j2 j3

n1 n2 n3



 , (6)

Using this decomposition, the integral over the Wigner matrix can be performed explicitly

and the Boulatov action (3) in spin representation reads [8]

SB[T ] =
∑

j1,j2,j3

µ2

2
|Tm1,m2,m3

j1,j2,j3
|2 − λ

4!

∑

j1,..,j6







j1 j2 j3

j4 j5 j6







T 46j , (7)

where the kinetic term is

|Tm1,m2,m3

j1,j2,j3
|2 =

∑

j1,j2,j3
m1,m2,m3

(−1)
∑

3

i=1
(ji−mi)Tm1,m2,m3

j1,j2,j3
T−m1,−m2,−m3

j1,j2,j3
, (8)

and the term T 46j encodes the contraction of the magnetic indices mi of the field paralleling

the contraction pattern of 3j-symbols to give the 6j symbol, i.e.

T 46j =
∑

{j,m}

(−1)
∑

6

i=1
(ji−mi)T−m1,−m2,−m3

j1j2j3
Tm3,m5,−m4

j3j5j4
Tm4,m2,−m6

j4j2j6
Tm1,−m5,m1

j6j5j1
. (9)

In this form, the equation of motion (4) now becomes

µ2Tm1,m2,m3

j1,j2,j3
=
λ

3!

∑

j4,j5,j6







j1 j2 j3

j4 j5 j6







T
46j
\{m1,m2,m3}

, (10)

where

T
46j
\{m1,m2,m3}

=
∑

m4,m5,m6

(−1)
∑

6

i=4
(ji−mi)Tm3,m5,−m4

j3j5j4
Tm4,m2,−m6

j4j2j6
Tm6,−m5,m1

j6j5j1
. (11)

is the field T where the three magnetic indices m1,m2 and m3 are not summed on.

In the rest of this article we will use this spin representation (7) of the Boulatov action.

Finally, before we discuss how matter degrees of freedom are included in the Boulatov

model, let us recall some facts concerning its interpretation as a model for 3d euclidean

quantum gravity. Its Feynman amplitudes are given by lattice gravity path integrals cor-

responding to a discretization of 1st order Palatini 3d gravity on the lattices dual to the
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Feynman diagrams. Equivalently, they correspond to the Ponzano-Regge spin foam ampli-

tudes, known to correspond to a state sum formulation of the same quantum theory. In

absence of matter, this quantum theory only describe flat 3d geometries and the partition

function, for given lattice, counts the moduli space of flat connections for the given topology.

The Boulatov model extends thus this quantum geometric content with a sum over lattices of

all topologies (all possible gluings of 3-simplices), including pseudomanifold configurations.

The quantum geometric effect of this additional sum is not fully understood. While the

sum over lattices with the same topology is most likely irrelevant from the physical point of

view, and, once controlled, should give at most a rescaling of the amplitudes, the sum over

different topologies may have more interesting physical consequences. Tree level amplitudes,

however, should not encode such topological effects, thus it is natural to interpret classical

solutions of the Boulatov model as still corresponding to flat space. Clearly, further work is

needed to improve our understanding of these issues.

B. Matter degrees of freedom

GFTs are not usual QFTs describing a theory on spacetime, but QFTs of spacetime,

tentatively describing its quantum building blocks and their dynamics [14]. Their dynamical

fields do not live, accordingly, on a manifold interpreted as spacetime, and on which the

usual metric and matter fields of GR and standard model live. Such spacetime manifold

simply does not appear in the fundamental formulation of the theory, as one does not find

coordinates and directions on such manifold.

According to the relational strategy for the construction of diffeomorphism-invariant ob-

servables in classical and quantum gravity [50, 51], spacetime localization should be defined

in terms of appropriately chosen dynamical degrees of freedom, internal to the theory, rather

than absolute external directions. For example, matter coupled to gravity can play the role

of a physical reference frame [50], i.e. of rods and clocks. While different choices of mat-

ter can be used to fill that role, the simplest framework is to use free massless (minimally

coupled) scalar fields χi [36, 52].

In three dimensions, one needs three scalar fields, and they can be combined into a vector

~χ = (χ1, χ2, χ3), to be added to the GFT data to localize in space and time, in a continuum

approximation, GFT observables and their dynamics.
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We now exhibit a specific construction extending the Boulatov model to include such

matter degrees of freedom. Other constructions can be found in the cited GFT literature.

Requiring the theory to be invariant under translations χi → χi + ai allows for a kinetic

term in the action (3) defined as ∇ =

(

∂

∂χ1
,
∂

∂χ2
,
∂

∂χ3

)

and thus extends T (g1, g2, g3) to

T (g1, g2, g3; ~χ) : SU(2)
3 × R3 → C. The new action writes 2

S[T ] =

∫

[dg]3d3~χ

[

1

2
∇T (g1, g2, g3; ~χ)∇T̄ (g1, g2, g3; ~χ) +

µ2

2
T (g1, g2, g3; ~χ)T̄ (g1, g2, g3; ~χ)

]

− λ

4!

∫ 6
∏

i=1

dgid
3~χT (g1, g2, g3; ~χ)T (g3, g5, g4; ~χ)T (g4, g2, g6; ~χ)T (g6, g5, g1; ~χ). (12)

This yields a modified equation of motion:

∇2T (g3, g2, g1; ~χ) + µ2T (g3, g2, g1; ~χ)

=
λ

3!

∫

dg4dg5dg6T (g3, g5, g4; ~χ)T (g4, g2, g6; ~χ)T (g6, g5, g1; ~χ). (13)

The corresponding action in spin representation writes

SB[T (~χ)] =
∑

j1,j2,j3

∫

d3~χ

[

1

2

∣

∣∇Tm1,m2,m3

j1,j2,j3
(~χ)

∣

∣

2
+
µ2

2

∣

∣Tm1,m2,m3

j1,j2,j3
(~χ)

∣

∣

2

− λ

4!

∑

j1,..,j6







j1 j2 j3

j4 j5 j6







∫

d3~χT (~χ)46j



 , (14)

leading to the following equation of motion:

∇2Tm1,m2,m3

j1,j2,j3
(~χ) + µ2Tm1,m2,m3

j1,j2,j3
(~χ) =

λ

3!

∑

j4,j5,j6







j1 j2 j3

j4 j5 j6







T (~χ)
46j
\{m1,m2,m3}

. (15)

Before we take our next step in the derivation, we point out that TGFT models of the

above ‘extended’type, including both local and non-local (tensorial) directions have also

been analysed, recently, from the point of view fo their renormalization group flow [54] and

their critical behaviour (at mean field level) [55, 56].

C. Classical homogeneous solutions to the Boulatov model

We first exhibit a homogeneous classical solution of the Boulatov model, independent of ~χ.

In the homogeneous restriction, equation (13) reduces to equation (4). The dependence on

2 Note that this action should not be confused with that of a dynamical Boulatov model of [53] where a

Laplace-Beltrami operator acts on the group manifold.
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the scalar matter degrees of freedom χi will only enter perturbatively around this solution. A

one-parameter family of solutions parametrized by normalised class functions f : SU(2) → C

was proposed in [39], with associated field Tf is given by

Tf (g1, g2, g3) = µ

√

3!

λ

∫

dhδ(g1h)f(g2h)δ(g3h), (16)

where δ(g) is the Dirac delta function over the group SU(2) such that

∫

dhδ(h) = 1,

∫

dhδ(h)f(h) = f(I), (17)

with I is the identity of SU(2) group.

The function f(g) is normalised, i.e.

∫

dhf(h)2 = 1. (18)

We can also write this solution in spin representation, substituting the solution (16) into

the general Peter-Weyl coefficients (6), to obtain

(Tf )
m1,m2,m3

j1,j2,j3
= µ

√

3!

λ

√

dj1dj3
∑

l2

f j2m2,l2





j1 j2 j3

m1 l2 m3



 , (19)

where f jmn is the coefficients in the Peter-Weyl decomposition of f(g)

f jmn =
√

2j + 1

∫

dgf(g)D̄j
mn(g), (20)

and the corresponding normalisation condition becomes

∑

j,m,n

(−1)m−nf jmnf
j
−m,−n = 1. (21)

Before we move on, let us give some remark on this class of solutions and its special form

which is regularised by “heat kernel”. First, the classical solution(16) is asymmetrical in the

group elements gi since g2 plays a preferential role through f . Restricting attention to this

special asymmetric solutions is thus a form of spontaneous symmetry breaking of the model.

Second, the presence of Dirac delta function in (16) leads to divergences. For example, the

action (13) is divergent when evaluated on this solution due to the factor δ(I) appearing.

This can also be seen from its Peter-Weyl expansion

δ(g) =
∑

j,m

(2j + 1)Dj
mm(g). (22)

10



Thus we need to regularize our solution. This can be achieved by different methods. For

example, one strategy is to introduce a sharp cut-off parameter J in the Peter-Weyl expan-

sion of T (g1, g2, g3), thus making the action finite. Here, we will instead use a heat kernel

regularization to make all quantities well-defined, at the cost of only having an approximate

solution to the equations of motion. To do so, we introduce a new real parameter ε. For

any function f of SU(2) with coefficients f jmn in its Peter-Weyl expansion, we define its heat

kernel regularization as (dj = 2j + 1)

fε(g) =
∑

j,m,n

√

djf
j
mnD

j
mn(g)e

−εCj (23)

with Cj is the Casimir of the spin j representation of SU(2). This function is well-defined

for any ε > 0 and its leading order when ε → 0 is the initial function f . In particular, for

the Dirac delta function of SU(2), its heat kernel regularization is

δε(g) =
∑

j,m

djD
j
mm(g)e

−εCj . (24)

Note that this function is not normalised. If we denote its norm as α−2
ε , the normalised

function associated to δε is (dj = 2j + 1)

∆ε(g) = αε
∑

j,m,n

√

dj(∆ε)
j
mnD

j
mn(g)e

−εCj , (25)

where the Peter-Weyl coefficients (∆ε)
j
mn has the form

(∆ε)
j
mn = αε

√

djδmne
−εCj . (26)

Using ∆ε(g), we can build now a regularized and symmetric field

Tε(g1, g2, g3) = µ

√

3!

λ

∫

dhδε(g1h)∆ε(g2h)δε(g3h) = µαε

√

3!

λ

∫

dhδε(g1h)δε(g2h)δε(g3h).

(27)

However, Tε(g1, g2, g3) is only an approximate solution of the homogeneous equation of

motion, i.e. it is a solution at leading order in ε. The coefficients of its Peter-Weyl expansion

are given by

(Tε)
m1m2m3

j1j2j3
= µαε

√

3!

λ

3
∏

i=1

√

djie
−εCji





j1 j2 j3

m1 m2 m3



 . (28)

In particular, when ε → 0 the coefficients of T are given by the 3j symbol, which is a

(regularized) classical solution to the Boulatov model.
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In the following calculation, we will use the solution (16) and will briefly illustrate the

special case (27) separately.

III. AMIT-ROGINSKY-LIKEMODEL FROM PERTURBATIONS AROUND CLAS-

SICAL BOULATOV SOLUTIONS

In this section, we obtain an AR-like action from the Boulatov GFT action by considering

specific perturbations around the classical solution constructed in the previous section.

The AR model [34] is a cubic field theory of a vector field φ self-coupled through the 3j

symbol for a fixed value of the spin j. Its action is

SAR[φ] =

∫

ddx

{

1

2

∑

m

(−1)j−m
[

(∇φjm)(∇φj−m) + µφjmφ
j
−m

]

+
∑

m1,m2,m3

λ

3!

√

2j + 1





j j j

m1 m2 m3



φj−m1
φj−m2

φj−m3







, (29)

where ∇ is the gradient operator.

It was recently pointed out in [35] that the large N(= 2j + 1) limit of the AR model is

given by the melonic graphs. As mentioned in the introduction, this feature is shared with

0-dimensional tensor models [23, 24] and topological GFTs as well.

A. Perturbations over homogeneous Boulatov solution

Following [39], we consider two-dimensional perturbations over the Boulatov model, which

depend on matter reference frame ~χ. The field becomes

Tψ(g1, g2, g3; ~χ) = Tf (g1, g2, g3) + ξψ(g1, g3; ~χ), (30)

where Tf (g1, g2, g3) is the solution to the equation of motion given by equation (16) with

(27) a special case, and ψ(g1, g3; ~χ) is a 2D-perturbation with ξ a real parameter 0 < ξ ≪ 1.

The Peter-Weyl coefficients of the perturbation are given by

ψm1m2m3

j1j2j3
(~χ) =

∑

{n}

∫

[dg]3ψ(g1, g3; ~χ)
3
∏

i=1

√

2ji + 1D̄ji
mini





j1 j2 j3

n1 n2 n3





≡ δj2,0δm2,0δ
j1,j3

√

2j1 + 1ψj1m1,m3
(~χ). (31)
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In order to obtain the equation above, we used the fact that j2 = 0 (see equation (A9)

in the appendix A). The scaling factor
√
2j1 + 1 is introduced for later convenience. The

Peter-Weyl coefficients of the perturbed solution write

(Tψ)
m1m2m3

j1j2j3
(~χ) = Tm1m2m3

j1j2j3
+ ξδj2,0δm2,0δ

j1,j3ψj1m1,m3
(~χ). (32)

Substituting (32) into the action (14), we get the action for the perturbed solution

SB[Tψ(~χ)] = SB[T ] + ξ2 · Seff [ψ] +O(ξ4), (33)

where the first order in ξ vanishes since Tf is a solution to the equation of motion. The action

Seff [ψ] represents the effective action of the perturbation field ψjmn and contains corrections

up to ξ. Therefore, ξ2Seff [ψ] contains corrections up to order ξ3.

In the following subsection, we develop each term arising from the Boulatov model in the

effective action and give sufficient conditions on the coefficients (Tε)
m1m2m3

j1j2j3
such that the

effective action Seff [ψ] takes the form of an AR-like action. Since the AR model involves a

vector field transforming in a representation of SU(2) and thus carrying only one magnetic

index m. Hence, we will specialize the perturbations to

ψj1m1m3
(~χ) =

∑

m

√

2j1 + 1φj1m(~χ)





j1 j1 j1

m1 m m3



 . (34)

and check that this particular choice of perturbations satisfies all the required conditions.

B. Conditions for the emergence of an Amit-Roginsky-like model

In order to simplify the notations, we omit from now on to explicitly write the dependency

on the vector ~χ, which should always be assumed.

1. Quadratic terms

Substituting perturbation (32) into the Boulatov action (14), the quadratic term in ξ

receives three kinds of contributions. The kinetic term of Boulatov model gives rise to

one contribution of the form ψψ. Then, the interaction term gives two distinct type of

contributions, depending on how the two perturbation fields are connected in the action.

13



Schematically, these two terms can be represented as TTψψ when the two perturbation

fields ψmamb
share one magnetic index, and TψTψ represents the terms that share none.

They yield different contributions to the effective action.

a. Term ψψ

The kinetic term
∑

j1,j2,j3

∣

∣(Tψ)
m1,m2,m3

j1,j2,j3
(~χ)

∣

∣

2
of the Boulatov action gives the following

contribution to the effective action:

∑

j1,j2,j3
m1,m2,m3

(−1)
∑

3

i=1
(ji−mi)

[

δj2,0δm2,0δ
j1,j3ψj1m1,m3

] [

δj2,0δ−m2,0δ
j1,j3ψj1−m1,−m3

]

=
∑

j1,m1,m3

m,m′

(−1)2j1−m1−m3φj1mφ
j1
m′(2j1 + 1)





j1 j1 j1

m1 m m3









j1 j1 j1

−m1 m′ −m3





=
∑

j1,m1

(−1)j1−m1φj1m1
φj1−m1

. (35)

This term is simply the quadratic term of the AR action (29). Note that this contribution

is independent of the solution Tm1m2m3

j1j2j3
and therefore it does not impose any restriction on

the homogeneous solution to be considered.

b. Terms TTψψ

There are four terms of type TTψψ. Each of them contributes to the effective action as

∑

m1,··· ,m6

j1,··· ,j6







j1 j2 j3

j4 j5 j6







(−1)
∑

i(ji−mi)T−m1,−m2,−m3

j1j2j3
Tm3,m5,−m4

j3j5j4

× δj2,0δm2,0δ
j4,j6ψj4m4,−m6

δj5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

m1,m3,m4,m6

j1,j3,j4,j6







j1 0 j3

j4 0 j6







(−1)
∑

i6=2,5(ji−mi)T−m1,0,−m3

j1,0,j3
Tm3,0,−m4

j3,0,j4
δj4,j6δj6,j1ψj1m4,−m6

ψj1m6,m1

=
∑

j1,m1,m6,m4

[

∑

m3

(−1)−m3−m4T−m1,0,−m3

j1,0,j1
Tm3,0,−m4

j1,0,j1

]

(−1)2j1−m1−m6ψj1m4,−m6
ψj1m1,m6

(36)

Thus if the homogeneous solution Tm1m2m3

j1j2j3
is such that

∑

m3

(−1)−m3−m4T−m1,0,−m3

j1,0,j1
Tm3,0,−m4

j1,0,j1
= c1,j1δm1,−m4

(37)
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for some coefficients c1,j1 then we get

∑

m1,··· ,m6

j1,··· ,j6







j1 j2 j3

j4 j5 j6







(−1)
∑

i(ji−mi)T−m1,−m2,−m3

j1j2j3
Tm3,m5,−m4

j3j5j4

× δj2,0δm2,0δ
j4,j6ψj4m4,−m6

δj5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

j1,m1,m6,m4

[

∑

m3

(−1)−m3−m4T−m1,0,−m3

j1,0,j1
Tm3,0,−m4

j1,0,j1

]

(−1)2j1−m1−m6ψj1m4,−m6
ψj1m1,m6

(38)

And we specializing to the perturbation (34) we get

∑

m1,··· ,m6

j1,··· ,j6







j1 j2 j3

j4 j5 j6







(−1)
∑

i(ji−mi)T−m1,−m2,−m3

j1j2j3
Tm3,m5,−m4

j3j5j4

× δj2,0δm2,0δ
j4,j6ψj4m4,−m6

δj5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

j1,m1

c1,j1(−1)j1−m1φj1m1
φj1−m1

. (39)

which is the kinetic term of the AR model.

Given a homogeneous solution, the proportionality coefficient c1,j1 can be explicitly com-

puted. Later, we will obtain another condition given by equation (45) that will be stronger

than condition (37) obtained here. Thus, this condition will be automatically satisfied when

Equation (45) is.

c. Term TψTψ

The remaining two quadratic contributions from the interaction term of the Boulatov

model are of the form TψTψ. Each of these terms contributes to the effective action as

∑

m1,··· ,m6

j1,··· ,j6

(−1)
∑

i(ji−mi)T−m1,−m2,−m3

j1j2j3
δj5,0δm5,0δ

j3,j4ψj3m3,−m4

× Tm4,m2,−m6

j4j2j6
δj5,0δm5,0δ

j1,j6ψj6m6m1







j1 j2 j3

j4 j5 j6







=
∑

m1,m3,m4,m6

j1,j3

(−1)j1+j3−m4−m6ψj3m3,−m4
ψj1m6,m1

1
√

(2j1 + 1)(2j3 + 1)

×
∑

j2,m2

(−1)
∑

3

i=1
(2ji−mi)T−m1,−m2,−m3

j1,j2,j3
Tm4,m2,−m6

j3,j2,j1
. (40)
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For a general solution of the equation of motion, this term leads to a non-diagonal kinetic

term for the ψ field. If the homogeneous solution satisfies the condition

∑

j2,m2

(−1)
∑

3

i=1
(2ji−mi)T−m1,−m2,−m3

j1,j2,j3
Tm4,m2,−m6

j3,j2,j1
= c2,j1c2,j3δm1,−m6

δm3,m4
, (41)

then this contribution becomes

∑

m1,m3,m4,m6

j1,j3

(−1)j1+j3−m4−m6ψj3m3,−m4
ψj1m6,m1

1
√

(2j1 + 1)(2j3 + 1)

×
∑

j2,m2

(−1)
∑

3

i=1
(2ji−mi)T−m1,−m2,−m3

j1,j2,j3
Tm4,m2,−m6

j3,j2,j1

=

[

∑

j1,m1

(−1)j1−m1
c2,j1√
2j1 + 1

ψj1m1,−m1

]2

. (42)

When specializing to the type of perturbation given by equation (34), we get

∑

j1,m1

(−1)j1−m1
c2,j1√
2j1 + 1

ψj1m1,−m1
=

∑

j1,m1,m

(−1)j1−m1c2,j1φ
j1
m





j1 j1 j1

m1 m −m1



 ,

=
∑

j1

c2,j1φ
j1
0 δj1,0

√

2j1 + 1,

=c2,0φ
0
0. (43)

where we used the equation (A8). Therefore, the quadratic term obtained from the TψTψ

term can also be made diagonal under the right choice of homogeneous solution and pertur-

bations.

2. Cubic terms

There is only one type of cubic contribution which comes from the interaction term of

the Boulatov model. These terms take the form Tψψψ; there are four such terms and they

each contribute as follows:

∑

{j,m}

(−1)

∑

i

(ji−mi)
T−m1,−m2,−m3

j1,j2,j3
δj5,0δm5,0ψ

j3
m3,−m4

δj2,0δm2,0ψ
j4
m4,−m6

δj5,0δm5,0ψ
j6
m6,m1







j1 j2 j3

j4 j5 j6







=
∑

m1,m3,m4,m6

j1

(−1)
−

∑

i6=2,5

−mi

T−m1,0,−m3

j1,0,j1

(−1)2j1

2j1 + 1
ψj1m3,−m4

ψj1m4,−m6
ψj1m6,m1

. (44)

16



If we impose that the homogeneous solution T satisfies

T−m1,0,−m3

j1,0,j1
= c3,j1(−1)−m3δm1,−m3

, (45)

for some coefficient c3,j1, this contribution becomes

∑

m1,m3,m4,m6

j1

(−1)−
∑

i6=2,5miT−m1,0,−m3

j1,0,j1

(−1)2j1

2j1 + 1
ψj1m3,−m4

ψj1m4,−m6
ψj1m6,m1

=
∑

m3,m4,m6

j1

(−1)2j1−m3−m4−m6
c3,j1

2j1 + 1
ψj1m3,−m4

ψj1m4,−m6
ψj1m6,−m3

. (46)

(47)

And when specializing to perturbation (34), this contribution becomes

∑

m1,m3,m4,m6

j1

(−1)−
∑

i6=2,5miT−m1,0,−m3

j1,0,j1

(−1)2j1

2j1 + 1
ψj1m3,−m4

ψj1m4,−m6
ψj1m6,m1

(48)

=
∑

m3,m4,m6

j1

(−1)2j1−m3−m4−m6
c3,j1

2j1 + 1

∑

m,m′,m′′

φj1mφ
j1
m′φ

j1
m′′

×





j1 j1 j1

m3 m −m4









j1 j1 j1

m4 m′ −m6









j1 j1 j1

m6 m′′ −m3





× (−1)j1
∑

m3,m4,m6

(−1)3j1−m3−m4−m6





j1 j1 j1

m −m4 m3









j1 j1 j1

m6 m′′ −m3









j1 j1 j1

−m6 m4 m′





=
∑

m,m′,m′′

j1

c3,j1
2j1 + 1







j1 j1 j1

j1 j1 j1







φj1mφ
j1
m′φ

j1
m′′





j1 j1 j1

m m′ m′′



 . (49)

Where we have used equations (A4) and (A11), and the fact that (−1)2j1 = 1 since j1 here

has to be an integer for the 3j symbol not to vanish. Thus, when imposing the condition (45),

we get a contribution which corresponds to the interaction term of the AR model.

Furthermore, as mentioned above, when comparing the two conditions (37) and (45), we

see that the former will be automatically satisfied when the later is as the two coefficients

are related through the relation

c1,j1 = c23,j1. (50)
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C. Emergence of the Amit-Roginsky-like model

Now we are ready to extract AR model from the Boulatove action (14), based on the two

conditions (41) and (45) we discussed in the last subsection. Our main result is the effective

action (63) and (64) for each mode φjm of the perturbation field (defined through equation

(34)). We can see that the form of these actions is the same as the AR one [34, 35].

a. The effective action for the perturbation ψ

For a perturbation of the form given by equation (34), it follows from the previous para-

graph that the conditions (41)and (45) are satisfied. The effective action for the vector

perturbation φjm(~χ) then becomes

S[φjm] = S0[φ
0
0] +

∑

j>0

Sj [φ
j
m], (51)

where

S0[φ
0
0] =

∫

d3~χ

(

1

2

{

(∇φ0
0)

2 +

[

µ2 +
λ

3!
(2c23,0 + c22,0)

]

(φ0
0)

2

}

− ξλ

3!
c3,0

(

φ0
0

)3
)

, (52)

and

Sj[φ
j
m] =

∫

d3~χ

{

1

2

[

|∇φjn|2 +
(

µ2 +
λ

3!
c23,j

)

|φjn|2
]

−c3,j1
2dj

ξλ

3!







j j j

j j j







∑

m1,m2,m3

φjm1
φjm2

φjm3





j j j

m1 m2 m3











, (53)

where
∑

n |φjn|2 =
∑

n(−1)j−nφjnφ
j
−n. The vector fields with different spin labels j decouple

and each of them has the form of an AR action with j-dependent mass term and coupling.

And again, the coefficients c2,j and c3,j can be given explicitly after substituting solutions

(19) and (28).

b. Computing coefficients ci and checking compatibility conditions.

We compute explicitly here the coefficients c1,j,c3,j and c2,j for the homogeneous solu-

tion (16) to check that these conditions are compatible with our homogeneous solution.

Substituting (16) into condition (45), we have

µ

√

3!

λ
dj1f

0
00





j1 0 j1

−m1 0 −m3



 = µ

√

3!dj1
λ

f 0
00(−1)j1+m3δm1,−m3

= c3,j1(−1)−m3δm1,−m3
,

(54)
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which leads to

c3,j =











(−1)jµ
√

3!dj
λ
f 0
00 if j ∈ N

0 otherwise
. (55)

On the other hand, condition (41) yields

3!µ2

λ

∑

j2,m2

(−1)
∑

3

i=1
(4ji−mi)dj1dj3

∑

n2,l2

f j2−m2,−n2
f j2m2,l2





j1 j3 j2

m1 m3 n2









j1 j3 j2

−m6 m4 l2





= c2,j1c2,j3δm1,−m6
δm3,m4

, (56)

which leads to the condition for f j2m2n2

∑

m2

(−1)n2−m2f j2−m2,−n2
f j2m2,l2

= dj2c
2
f,j2
δn2,l2 , (57)

for some new constants cf,j2. Together with the normalisation condition (18) for f jmn, we

get the condition that these new constants should satisfy

1 =
∑

j2,m2,n2,l2

(−1)n2−m2f j2−m2,−n2
f j2m2,l2

δn2,l2,

=
∑

j2

d2j2c
2
f,j2
, (58)

and we can get the explicit form (60) of cf,j2 by substituting the heat kernel regularized

solution (28).

c. The heat kernel regularized solution

The check on the extra conditions performed above on the homogeneous solution (28) still

holds at first order in ε when considering the heat kernel regularized solution (27). Using

its Peter-Weyl coefficients (26), we see that the constant c3,j is simply

c3,j = (−1)jµ

√

3!dj
λ

(∆ε)
0
00 = (−1)jµ

√

3!dj
λ
αε. (59)

And the coefficients cf,j would have the form

cf,j = αεe
−εCj . (60)

Similarly, the condition (41) is only satisfied approximately at first order in ε. Indeed at

first order in ε the Equation (A7) gives

∑

j,m

dje
−2εCj





j1 j2 j

m1 m2 m









j1 j2 j

m′
1 m′

2 m



 ≈ δm′
1
m1
δm′

2
m2
. (61)
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Hence the coefficients c2,j of the condition (41) can then be determined as

c2,j = µdjαε

√

3!

λ
. (62)

It follows that the effective action for the heat kernel regularized homogeneous solution is

S0[φ
0
0] =

∫

d3~χ

{

1

2

[

(∇φ0
0)

2 + µ2
(

1 + 3α2
ε

)

(φ0
0)

2
]

−
√
λξµαε√
3!

(

φ0
0

)3

}

, (63)

Sj [φ
j
m] =

∫

d3~χ

{

1

2

[

|∇φjn|2 + µ2
(

1 + djα
2
ε

)

|φjn|2
]

−(−1)j√
3!

√
λξµαε

2
√

dj







j j j

j j j







∑

m1,m2,m3

φjm1
φjm2

φjm3





j j j

m1 m2 m3











, (64)

where the second equation is exactly the AR action for spin j, with mass and interaction

coupling dependent on the fundamental GFT coupling and on the spin index j.

This shows that the AR model can be obtained as a particular two dimensional pertur-

bation around classical solutions of the Boulatov model, provided that the classical solution

satisfies the conditions given by Equations (41) and (45). This is our main result.

Before analysing the resulting generalized AR model further, let us add a few comments

on our result. As recalled earlier, the AR model is a vector model on flat euclidean space.

From a quantum gravity point of view, the two key ingredients of the model that one would

consider challenging to reproduce from the fundamental quantum dynamics are the back-

ground flat space it lives on and its local nature. This is because the fundamental formulation

of the theory, here the extended Boulatov model with its simplicial quantum gravity un-

derpinning, does not feature continuum spacetime manifold nor local fields defined on it, so

both have to be somehow reconstructed in the continuum limit, and the whole framework

is diffeomorphism invariant. In our derivation, these issues are apparently bypassed in few

simple steps: the continuum limit is encoded in the mean field treatment of the Boulatov

model, effectively resumming an infinite series of perturbative, lattice-dependent amplitudes;

the desired flat geometry is provided by the homogeneous background solution we expand

around; the local characterization of the GFT field perturbations, interpreted as a local vec-

tor field in that flat space, is allowed by the extra frame degrees of freedom, in turn coming

from scalar matter in the discrete gravity picture, thus a material reference frame. While

this ensures some coherence between the interpretation of all the various formal ingredients

in our derivation and its result, it is clear that each of them requires further analysis.
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IV. MELONIC DOMINANCE

As already mentioned above, an important feature of the AR model is the dominance

of melonic graphs in the large N = 2j + 1 limit. However, the main difference between

the effective action (51) and the original AR action is the presence of the sum over spins j.

Thus we have to check whether or not this new summation spoils the existence of a melonic

regime. Even though the general behaviour of {3nj} symbols as functions of j is an open

issue [57–60], one can qualitatively study the behaviour of the Feynman amplitudes of the

model and give additional constraints to ensure the existence of such melonic regime.

A. Feynman amplitudes for the non-regularized solution

For simplicity, we will drop below the heat kernel regularisation and work with the actions

given by Equation (53), including the sum over spin labels j. As in the AR model, each

Feynman diagram γ of our new model consists of isoscalar part Iγ and isospin part Aγ [34, 35]:

Aγ =
∑

j

cγ

(

λ{6j}
3!(2j + 1)

)v

IγAγ , (65)

where cγ is the combinatorial factor of the diagram. The isoscalar part yields a space inte-

gral, so one needs to study the isospin part to find how the Feynman amplitude depends on

N .

The melonic graphs are Fully 2-Particle Reducible (F2PR) diagrams, i.e. they always

admit a 2-cut which gives another melonic graph with fewer vertices, until the trivial graph

is reached. Their contribution writes

AF2PR ∼
∑

j

(2j + 1)1−3n{6j}2n ≡ ĀF2PR, (66)

with for a graph with v = 2n vertices. For a graphs which is not F2PR, the Feynman

amplitude can be factorized as a product of 2-particule irreducible graphs

ANF2PR ∼
∑

j

(2j + 1)−n0−2n
k
∏

i=1

A{3nij}{6j}2n ≡ ĀNF2PR, (67)

where

n = 1 + n0 − k +
k

∑

i=1

ni, (68)
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and A{3nij} is the amplitude of a three-particle irreducible diagrams with 2ni vertices.

When N = 2j + 1 goes to infinity, the amplitudes ĀNF2PR is conjectured to obey the

following bound [34]

ĀNF2PR ≤
∑

j

(2j + 1)1−3n−α{6j}2n, (69)

for some real number α > 0. Asymptotically, when N → ∞, both n ≥ 1 and the 6j symbol

are small with respect to N . Therefore we get the following bound

ĀF2PR <
∑

j

N1−3n =
∑

j

(2j + 1)1−3n =
(

1− 21−3n
)

ζ(3n− 1), (70)

where ζ is the Riemann zeta function, which is a monotonically decreasing finite function of

n.

If one assumes that the bound (69) holds for any value of N , then the amplitude of a

NF2PR graphs is also finite. If the bound (69) fails to hold for values of N satisfying

N < Nt for some bound Nt, then the sum from N = 3 (j can only be an integer no smaller

than 1, so N ≥ 3) to N = Nt is still a finite number, while the sum from N = Nt is finite

as well. Therefore, it is possible that ANF2PR is comparable with AF2PR since the maximal

value of ζ(3n− 1) is only π2/6 ≃ 1.645.

One can thus conclude that the sum over j can dramatically change the amplitude of a

Feynman graphs of the AR model and spoil the melonic limit at large N . However, one can

find ways to rule out this possibility and ensure that the melonic dominance is preserved.

This will be illustrated in the following subsection.

B. Restoring the melonic dominance

One näıve way to restore the melonic dominance is of course to further specialize the

form of the perturbation (32) in order to enforce the selection of one single value for the

spin j, thus getting rid of the sum over spin labels and leading to the original AR model:

(Tψ)
m1m2m3

j1j2j3
(~χ) = Tm1m2m3

j1j2j3
+ δj1jδj2,0δm2,0ψ

j1
m1,m3

(~χ), (71)

Another, more interesting, way to recover melonic dominance is to work with the approx-

imate solution (27). Indeed, when j2 = 0 the solution has the form:

(Tε)
m1m2m3

j1j2j3
= µαε

√

3!

λ
e−2εCj1

√

2j1 + 1(−1)j1−m1δj1,j3δm1,−m3
. (72)
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For ε = (2jmax(jmax + 1))−1, the expression above scales as
√
2j1 + 1 for j1 < jmax, with

jmax a large number. Hence, in the Peter-Weyl expansion, the coefficients with larger j are

dominant, and the coefficients (Tε)
m1m2m3

j1j2j3
with ji < jmin for some threshold jmin can be

neglected. We require that jmin is also a large number so that the bound (69) is valid. At

first order in ε one then has:

(Tψ)
m1m2m3

j1j2j3
(~χ) ≃







Tm1m2m3

j1j2j3
+ δj1jδj2,0δm2,0ψ

j1
m1,m3

(~χ), jmin ≤ ji ≤ jmax

0, otherwise
.

Such perturbations φjm will lead to the amplitude

Aγ =

j=jmax
∑

j=jmin

cγ

(

λ{6j}
3!
√
2j + 1

)v

IγAγ , (73)

which becomes an infinitesimal again for large jmin and jmax, while the non-F2PR graphs

are higher order infinitesimals as in the original AR model. The melonic dominance is thus

restored.

V. CONCLUDING REMARKS

In this work, we have obtained a generalised version of the Amit-Roginski model as a

(two-dimensional) perturbation around a classical homogeneous solution of the Boulatov

group field theory model for 3d quantum gravity, extended to include (what plays the role,

in the discrete gravity picture, of) scalar matter degrees of freedom, which end up providing a

material frame and embedding coordinates in the resulting AR model. This is an interesting

result from a physical point of view, first of all, since it connects 3d quantum gravity,

in a well-studied and mathematically rich formulation, and the AR model, itself of great

mathematical interest. The main difference between our effective action for the perturbation

and the usual AR model is the presence of the summation on the spin index j. While it is

still unclear whether this summation could spoil the dominance of melonic diagram in the

most general framework, it is possible to preserve this melonic limit also in this generalised

AR model by making use of the heat kernel regularization and taking a double scaling limit.

It is also an interesting result from a more conceptual point of view, since it shows an ex-

ample of the emergence of a local field theory (in flat space) from a background independent

quantum gravity formalism based on non-spatiotemporal structures (meaning, not corre-

sponding directly to quantized continuum spacetime-based fields), which is an outstanding
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challenge for most quantum gravity approaches. In fact, our result resonates (especially in

the key role played by scalar matter used as a relational frame) with recent work on GFT

cosmology [38].

This result opens the way for at least three different generalisations. Firstly, a natural

follow-up would be to find other classical solutions to the Boulatov model and to study per-

turbations around these solutions to see if they also admit Amit-Roginski-like perturbations.

Secondly, as already mentioned in the Introduction, the holographic SYKmodel is another

type of field theory that is known to enjoy a melonic limit. It thus appears interesting to

us to investigate how the SYK model as well can be obtained within a GFT setup, again in

terms of fluctuations over non-perturbative quantum gravity configurations.

Third, as we have already mentioned, a detailed comparison of our 3d quantum gravity

setting with the O(N)3-symmetric random tensor model studied in [44], leading to a sim-

ilar classical solution and another possible route to derive the AR model, would be very

interesting to perform.

Once more, while exploring generalizations of our results, many elements in our derivation

deserve a deeper and more extensive analysis. Among these, we mention again: the quantum

geometric interpretation and effects of the sum over topologies in the GFT construction; the

continuum physical interpretation of the classical solutions of GFT equations of motion; the

renormalization group flow and continuum limit of the extended TGFT models, with both

local and tensorial directions, that were the starting point of our analysis.
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Appendix A: Definitions and identities from SU(2) recoupling theory

We give several definitions and properties related to SU(2) recoupling theory used in the

article. All those properties are classical results on recoupling theory of SU(2), and we refer

the interested reader to Ilkka Mäkinen’s introduction [48] as well as Pierre Martin-Dussaud’s

lively note [49] on this topic for more details.

1. Haar measure and Wigner matrices

From the Peter-Weyl theorem, the Wigner matrices Dj
mn(g) form an orthogonal basis of

the functions f : SU(2) → C. This orthogonality relation is encoded in the Haar measure

via the relation
∫

dgDj
mn(g)D̄

j′

m′n′(g) =
1

(2j + 1)
δjj

′

δmm′δnn′ , (A1)

where the Wigner matrices satisfy

Dj
mn(g) = (−1)m−nD̄j

−m,−n(g). (A2)

2. 3j-symbol and its properties

The 3j symbol is invariant under the action of SU(2) group,

Dj1
m1n1

Dj2
m2n2

Dj3
m3n3





j1 j2 j3

n1 n2 n3



 =





j1 j2 j3

m1 m2 m3



 . (A3)

It’s also invariant under the even permutations of indices, while it acquires an additional

phase under odd permutations





j1 j2 j3

m1 m2 m3



 = (−1)j1+j2+j3





j2 j1 j3

m2 m1 m2



 . (A4)

The same phase also appear if we replace mi by their negative





j1 j2 j3

−m1 −m2 −m3



 = (−1)j1+j2+j3





j1 j2 j3

m1 m2 m3



 . (A5)
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The 3j symbols satisfy two orthonormal relations

(2j3 + 1)
∑

m1,m2





j1 j2 j3

m1 m2 m3









j1 j2 j′3

m1 m2 m′
3



 = δj3,j′3δm3,m
′
3
, (A6)

∑

j3,m3

(2j3 + 1)





j1 j2 j3

m1 m2 m3









j1 j2 j3

m′
1 m′

2 m3



 = δm1,m
′
2
δm2,m

′
2
, (A7)

Finally, when one of the magnetic moment (saym3) vanishes, then the 3j symbol vanishes

unless m1 = −m2 and we have

∑

m

(−1)j−m





j j k

m −m 0



 =
√

2j + 1δk,0. (A8)

And in particular for k = 0 we have




j1 0 j3

n1 0 n3



 = δj1,j3
1√

2j1 + 1
(−1)j1+n1δn1,−n3

(A9)

3. 6j-symbol and its properties

The 6j symbol is defined as






j1 j2 j3

j4 j5 j6







=
∑

ji,mi

(−1)
∑

6

a=1
(ja−ma)





j1 j2 j3

−m1 −m2 −m3









j1 j5 j6

m1 −m5 m6





·





j4 j2 j6

m4 m2 −m6









j4 j5 j3

−m4 m5 m3



 . (A10)

It enjoys several symmetries properties that we do not make use of in the main body. We

refer the interested reader to [48] where they are explicitly mentioned.

Using the 6j symbol we have

∑

n1,n2,n3

(−1)
∑

3

a=1
(ka−na)





j1 k2 k3

m1 −n2 n3









k1 j2 k3

n1 m2 −n3









k1 k2 j3

−n1 n2 m3





=







j1 j2 j3

k1 k2 k3











j1 j2 j3

m1 m2 m3



 . (A11)

Finally when one of the spin index (say j6) vanishes we have






j1 j2 j3

j4 j5 0







=
δj1,j5δj2,j4
√

dj1dj2
(−1)j1+j2+j3{j1 j2 j3}. (A12)
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