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Abstract: We show that the accelerating expansion phase of the universe can emerge from the group
field theory formalism, a candidate theory of quantum gravity. The cosmological evolution can be
extracted from condensate states using the mean field approximation, in a form of modified FLRW
equations. By introducing an effective equation of state w, we can reveal the relevant features of the
evolution and show that, with the proper choice of the parameters, w will approach −1, leading to an
accelerating phase dominated by the cosmological constant effectively.
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1. Introduction

Since its discovery [1,2], the accelerating expansion of our universe remains a challenge
to theoretical physics. One way to achieve the acceleration is to introduce dark energy,
whose equation of state is close to−1 [3]. The simplest candidate would be the cosmological
constant Λ [4], but the smallness of its observed value [5], compared to the theoretical
expectations from the vacuum energy of particle physics [6] or from the renormalisation
flow of couplings in general relativity (GR) [7], make it difficult to find a compelling origin
of Λ.

Another route, besides the more particle-theoretic approach, is to modify gravity
theory [3]. In particular, the quantum gravity effects can be viewed as modifications to GR
at the effective level. For example, the acceleration of the universe can be reproduced within
the formalism of an asymptotically safe cosmology [8], of the Dvali–Gabadadze–Porrati
braneworld model [9], and of condensate cosmology in group field theory (GFT) [10],
without the need for dark energy or the cosmological constant. On the other hand, even if
some dark energy fields do exist, their behaviour may be subject to quantum gravity effects;
for instance, some future singularities could be avoided [11].

In this work, we also followed this approach. By summarizing the main results
obtained in [10], we show that in GFT condensate cosmology, the late time acceleration of
the universe’s expansion will emerge naturally, without introducing any dark energy field
that may have mysterious properties such as negative pressure.

As a candidate theory of quantum gravity, instead of the familiar spacetime degrees
of freedom, GFT provides more abstract, non-spatiotemporal entities, from which the
continuum spacetime should emerge [12–14]. Furthermore, the cosmological evolution can
be extracted from suitably constructed condensate states, which include a large number
of quanta to recover the continuum limit [15–22]. In this formalism, the universe can be
viewed as a quantum fluid constituted by GFT quanta, and its dynamics follows from
the fundamental GFT theory through a hydrodynamic approximation. Various works
have been performed in this direction; for example, using the GFT condensate, one can
derive the modified FLRW equation [16], a varying Newton constant G [23], and the
inflationary phase without the need for inflaton [24]. In this report, we summarise the main
results obtained recently in [10], where we made a further step and showed that, using the
GFT condensate, it is also possible to reproduce a long-lasting acceleration phase in our
cosmological expansion at late times.
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The report is organised as follows. In Section 2, we briefly review the basics of the GFT
formalism and its relation to cosmology. The dynamics and the modified FLRW equation
are given in Section 3, where we also introduce the effective equation of state to make our
discussion more explicit. Section 4 presents our main result, that a long-lasting accelerated
expansion at the late time can be reproduced in our model, of purely quantum gravity
origin. Finally, in Section 5, we give a brief summary of our results.

2. Condensate Cosmology in GFT

For the emergence of 4d spacetime, one usually chooses the GFT field to be a map
over four copies of the SU(2) group, ϕ : SU(2)4 → C, ϕ(gv) = ϕ(g1, g2, g3, g4) [12].
Geometrically, to associate the basic quanta of our theory with a tetrahedron, we further
require that the field ϕ(gv) be right invariant ϕ(gvh) = ϕ(g1h, g2h, g3h, g4h) = ϕ(gv), ∀h ∈
SU(2) [12]. Furthermore, since the spacetime is emergent, specifically there is no time to
start with, one usually needs a free massless scalar field as a relational clock to track the
evolution; this way, the field ϕ(gv, φ) becomes time dependent.

The right invariance of ϕ(gv, φ) under SU(2) enables us to project the field using the
Peter–Weyl decomposition onto the complete and orthonormal basis of L2(SU(2)4/SU(2)),
the space of square integrable functions over quotient space SU(2)4/SU(2). Such a basis
can be given by the spin network vertex functions κ~x(gv), which are associated graphically
with a spin network four-vertex labelled by ~x = (~j, ~m, ι), i.e., a node with d = 4 open links
associated with four spins~j = (j1, j2, j3, j4), together with angular momentum projections
~m and the intertwiner quantum number ι associated instead with the node itself [25]. One
thing to be noted is that these quantum numbers characterise the geometrical properties of
the tetrahedron, and in particular, each spin label ji determines the area of the associated
face [25,26].

More explicitly, in the second quantised form, the field operators can be written as:

ϕ̂(gv, φ) = ∑
~x

ĉ~x(φ)κ~x(gv), ϕ̂†(gv, φ) = ∑
~x

ĉ†
~x(φ)κ̄~x(gv), (1)

where ĉ~x(φ) and ĉ†
~x(φ) are the annihilation and creation operator, respectively.

Having the basic operators in hand, the next step would be to find a suitable state for
the spacetime of interest, at least approximately. In our case, the homogeneous universe at
a given time can be approximated by the coherent peaked state (CPS), which is constituted
by a large number of quanta concentrated in a fixed relational time φ0 [16,22]:

|σε; φ0, π0〉 = N (σ) exp
(∫

(dg)4dφηε(φ− φ0, π0)σ̃(gv, φ)ϕ̂†(gv, φ)

)
|0〉 , (2)

with |0〉 the vacuum state, defined by ϕ̂(gv, φ) |0〉 = 0 for all gv and φ, and N (σ) a
suitable normalisation factor. Peaking function ηε(φ− φ0, π0) is peaked around φ0 with
a typical width given by ε, and the fluctuations of the operator corresponding to the
conjugate momentum of the scalar field φ are controlled by π0. We call σ̃(gv, φ) the reduced
condensate wave function and assume that it does not modify the peaking property of the
CPS [22].

The wave function σ̃(gv, φ) can be decomposed using the Peter–Weyl decomposition
as well. For the emerged universe to be isotropic, we require the individual quanta
to be as isotropic as possible, enforcing σ̃(gv, φ) to only have support over equilateral
tetrahedra [16], for which the area of the four faces is equal. Since each area is determined by
the associated spin ji of the face, we see that only the coefficients with j1 = j2 = j3 = j4 = j
survive in the decomposition [16].

σ̃(gv, φ) = ∑
j

σ̃j(φ)Ī
j,ι+
~m I j,ι+

~n (2j + 1)2
4

∏
l=1

Djl
ml nl (gl), (3)
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where we write j for~j = (j1, j2, j3, j4) = (j, j, j, j), I j,ι+
~m is the intertwiner labelled by ι, and

Djl
ml nl (gl) are the Wigner matrix functions for SU(2).

3. Volume Dynamics and Equation of State

The decomposition (3) indicates that the time dependence of the condensate is only
encoded in σj(φ); hence, effectively, the dynamics of the condensate can be given by the
following action:

S( ¯̃σ, σ̃) =
∫

dφ0

{
∑

j

[
¯̃σj(φ0)σ̃

′′
j (φ0)− 2iπ̃0 ¯̃σj(φ0)σ̃

′
j (φ0)− ξ2

j
¯̃σj(φ0)σ̃j(φ0)

]
+ U( ¯̃σ, σ̃)

}
, (4)

where π̃0 =
π0

επ2
0 − 1

, ξ j is an effective parameter encoding the details of the kinetic term of

the fundamental GFT action (in the isotropic restriction), and ′ denotes the derivatives with
respect to φ0. Finally, from a rather phenomenological approach, the interaction kernel
U( ¯̃σ, σ̃) can be modelled in a simple, rather general form [24]:

U( ¯̃σ, σ̃) = ∑
j

(
2λj

nj
|σ̃j(φ0)|nj +

2µj

n′j
|σ̃j(φ0)|

n′j

)
, (5)

where λj and µj are interaction couplings corresponding to each mode j satisfying that
|µj| � |λj| � |ξ2

j − π̃2
0 |, and we assumed that the constants n′j > nj > 2.

Varying the action (4) with respect to ¯̃σj, we can obtain the equation of motion [22,24].
For a purpose that will be clear later, we can decompose σ̃j(φ) = ρj(φ) exp[iθj(φ)] into
module ρj(φ) and phase θj(φ), then the equation of motion splits into the imaginary and
real part, respectively. The imaginary part corresponds to a conserved quantity:

Qj = (θ′j − π̃0)ρ
2
j , (6)

whose derivative vanishes, Q′j = 0. Then, the real part becomes [22,24]:

ρ′′j −
Q2

j

ρ3
j
−m2

j ρj + λjρ
nj−1
j + µjρ

n′j−1
j = 0, (7)

where m2
j = ξ2

j − π̃2
0. This equation can be integrated once directly, providing another

conserved quantity, which corresponds to the “clock-time translation” invariance of the
system [16,22,24],

Ej =
1
2
(ρ′j)

2 +
Q2

j

2ρ2
j
− 1

2
m2

j ρ2
j +

λj

nj
ρ

nj
j +

µj

n′j
ρ

n′j
j . (8)

Now, we are in a position to extract observables from the condensates. In the con-
densate, for each equilateral tetrahedron characterised by mode j, we can associate a
volume Vj ∝ l3

p j3/2, and the module square |σj|2 = ρ2
j gives the number of such tetrahedra.

Hence, the total volume of the universe can be approximated by (ignoring the quantum
fluctuations) [16,22]:

V(φ0) ≈∑
j
Vjρj(φ0)

2. (9)

Using Equations (7) and (8), we obtain the modified FLRW equations [16]:
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(
V ′
3V

)2

=

2 ∑j Vj

√
2Ejρ

2
j −Q2

j + m2
j ρ4

j −
2
nj

λjρ
nj+2
j − 2

n′j
µjρ

n′j+2
j

3 ∑k Vkρ2
k


2

, (10)

V ′′
V =

2 ∑j Vj

[
2Ej + 2m2

j ρ2
j −

(
1 + 2

nj

)
λjρ

nj
j −

(
1 + 2

n′j

)
µjρ

n′j
j

]
∑k Vkρ2

k
. (11)

In the free case where λj = µj = 0, the usual FLRW equation can be reproduced when
the total volume is large [16].

In a homogeneous and isotropic universe, the modified FLRW Equations (10) and (11)
are enough to track the evolution of our universe. However, the relevant features of the
dynamics can be extracted more easily from a deduced quantity, the effective equation
of state w = −1− 2Ḣ/(3H2), where H is the Hubble parameter and the dot represents
the derivative with respect to the co-moving time t [3]. In relational language, w can be
rewritten as [10]:

w = 3− 2VV ′′
(V ′)2 , (12)

where V is the total volume and ′ indicates the derivative with respect to the relational time
φ, and we chose the time gauge, in which the volume V = a3 for scale factor a; hence, there
is no temporal direction in the tetrahedron as the building block of the universe; all of the
normal vectors to each face of the tetrahedron are orthogonal to the time direction.

In the following, we discuss the late time cosmological expansion using the effective
equation of state (12).

First of all, we see that even with only a single mode, we can already obtain useful
cosmological results from our model. For example, the classical limit emerges already in the
free case with only one mode, where, for a large volume, w = 1 is a constant, corresponding
to the equation of state of a free massless scalar field, the one we introduced as the relational
time. In fact, substituting w = 1 back into its definition (12), we obtain:

V ′′
V −

(
V ′
V

)2

=
VV ′′ − (V)2

V2 =
d

dφ

(
V ′
V

)
= 0;

hence, V ′/V = const, which characterises the FLRW equation using the relational language
in the presence of a free massless field [16]. Furthermore, if we take into account the
interaction term, by adjusting the value of couplings λ and µ, one can obtain a long-lasting
inflationary phase and a cyclic universe [24].

In the next section, we consider the case where multiple modes contribute.

4. Late Time Acceleration of the Universe

In general, there is an early time acceleration phase in our model, dominated by the
free parameters of the condensate, but such a phase ends quickly, no matter whether we
consider only a single mode [23] or multiple modes [10]. When including interactions,
however, the phase of the late time acceleration will emerge and could be long lasting.
In particular, with two interactions, it is possible to combine the inflation and late time
acceleration phase together [10], but for simplicity in this report, we only consider the
case where each mode has only one interaction term and setting µj = 0 in Equations (7)
and (8) for example. It should be emphasised again that here, we present a summary of our
previous results; for more, details please refer to [10].

When ρj is large, since nj > 2 and µj = 0, we see that the λ term dominates in
Equation (8), which can be approximated to:
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ρ′j(φ) =

√
−2λj

nj
ρ(φj)

nj
2 . (13)

We require λj < 0 so that ρ′j stays real. Equation (13) can be easily solved, and
we obtain:

ρj(φ) =

(
2

nj − 2

√
−2λj

nj

)− 2
nj−2 1

(φj∞ − φ)
2

nj−2
, (14)

where φj∞ is a constant of integration, determined by initial conditions, and we have
approximately [10]:

φj∞ = −
ln[−λj/(2m2

j )]

(nj − 2)mj
+

1
2mj

ln

 n
2

nj−2

j (2m2
j )√

E2
j + m2

j Q2
j

. (15)

Since for each j, the module ρj will diverge at φ = φj∞, the total volume V = ∑j Vjρ
2
j

will be dominated by the mode with the smallest φj∞. Note that for nj ≤ 6, the divergence
of the volume at the finite relational time will not lead to singularities in our model, as the
effective energy density of the whole universe will remain finite, as can be seen later [10].

On the other hand, other modes, even sub-dominated, can still modify the universe’s
evolution. In fact, adding another mode will change the way that the effective equation of
state w approaches its asymptotic value [10]. To see this, we considered the case with two
modes, and to save space, we used ρ1,2 to represent ρj1,j2 and similarly for other parameters.
Keeping in mind that in this report, we set µ1 = µ2 = 0, then at a large volume, w will be
dominated by the λ terms, as well as the volume. For simplicity, we further assumed that
n1 = n2 = n, then w will only depend on the ratio r = ρ2/ρ1 in the large volume limit:

w = 3− (2 + n)(V1 + r2V2)(V1λ1 + rnV2λ2)

2
(
V2

1 λ1 + r2+nV2
2 λ2 − 2r1+ n

2 V1V2
√

λ1λ2

)
= 2− n

2
−
(n

2
+ 1
)V1V2r2

(
rn/2−1 −

√
λ1/λ2

)2

(√
λ1/λ2V1 + V2rn/2+1

)2 , (16)

which approaches the asymptotic value w→ 2− n/2 when the universe’s volume is large.

When φ1∞ = φ2∞, the ratio r =
ρ2

ρ1
=

(
λ1

λ2

) n
4−

1
2

becomes a constant. Submitting to

Equation (16), we obtain a constant equation of state w = 2− n/2. Further analysis shows
that w approaches this asymptotic value from above [10]. While for φ1∞ < φ2∞, ρ1 diverges
before ρ2 does, hence r → 0 and w will approach the asymptotic value from below.

The case with n = 6 is of particular interest since w = −1 corresponds to the cosmo-
logical constant. Without loss of generality, we can assume φ1∞ < φ2∞, then the equation
of state (16) can be expanded with respect to small r, and to the next to leading order,
we obtain:

w = −1− 4V2

V1
r2 = −1− 4V2

V1

ρ2(φ)
2

ρ1(φ)2 .

Therefore, w < −1 for φ < φ1∞ and corresponds to some kind of phantom energy,
whose energy density increases when the universe grows [3,27,28]. This leads us to the
so-called phantom analogue of the de Sitter spacetime [29].



Universe 2022, 8, 163 6 of 8

A further approximation can be made by noting that at a large volume, we can replace
φ by φ1∞ in ρ2(φ),

ρ2(φ)→ ρ2(φ1∞) =

(
1
2

√
−λ2

3

)− 1
2 1

(φ2∞ − φ1∞)
1
2

.

Furthermore, since ρ1(φ) → ∞, the contribution to the total volume from ρ2 can be
ignored, then the total volume reduces to V ≈ V1ρ2

1, and we obtain:

w = −1− b
V , (17)

where b = 4V2ρ2
2(φ1∞) is a constant. Notice again that since b > 0, we have w < −1, and the

phantom divide w = −1 is being crossed. Furthermore, as the volume grows, w approaches
w = −1 fast enough, and the effective energy density of the universe will remain finite;
hence, in our model there are no singularities, but a de Sitter spacetime [10]. In fact, the
effective energy density ρψ satisfies the conservation equation ρ̇ψ + 3H(1 + w)ρψ = 0,
which for a large volume can be approximated as:

dρψ

dV −
bρψ

V2 = 0.

We can then solve for ρψ at a large volume as:

ρψ = ρψ0e−
b
V ≈ ρψ0 −

ρψ0b
V , (18)

where ρψ0 is a constant of integration, representing the asymptotic value of ρψ when V → ∞.
In fact, ρψ0 serves as the cosmological constant, and in our model, it is possible to show
that the smallness of the observed value of ρψ0 can be related to the fact that the w crosses
the phantom divide w = −1 only recently [30]; currently, we are working in this direction.

Figure 1 shows the evolution of w in our model [10]. It is clear that in the early universe,
when the volume was very small, w < −1/3, corresponds to an early acceleration phase.
As the volume grows, for φ1∞ = φ2∞, w decreases when interactions start to dominate
and approaches w = −1 from above, while for φ1∞ < φ2∞, the equation of state w will
decreases till it crosses the phantom divide w = −1 and then start to increase, reaching its
asymptotic value from below. This confirms our analysis in this section.

0 2 4 6 8 10 12 14 16 18

-1.5

-1

-0.5

0

0.5

1

1.5

2

1
<

2

1
=

2

Figure 1. The behaviour of w in the two modes case, where both modes have only one interaction
term. The blue solid line shows the case where φ1∞ < φ2∞, while for the red dashed line, we have
φ1∞ = φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. The
parameters are
V1 = 1/3, m2

1 = 3, E1 = 5, Q2
1 = 9, λ1 = −10−8, µ1 = 0, V2 = 1/2, m2

2 = 2, E2 = 9, Q2
2 = 2.25,

µ2 = 0, n1 = n2 = 6, and λ2 = −9.5 × 10−8 for φ1∞ < φ2∞, while λ2 = −9.5725 × 10−8 for
φ1∞ = φ2∞.
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5. Discussion

This report discusses the possibility to reproduce the late time acceleration phase in the
universe’s expansion from a candidate theory of quantum gravity, the group field theory. In
this formalism, the universe is constituted by a large number of building blocks, which are
excitations of the GFT field. Taking into account the homogeneity, the universe at a given
time can be modelled by the CPS, the condensate state peaked around a relational time φ0.
The observables, such as the total volume, can be extracted from the CPS, and in particular,
the effective equation of state w can be constructed from the volume and its derivatives.

To obtain the dynamics, we first showed that the wave function σ(gv, φ) can be
decomposed into different modes σj(φ), and the evolution of the universe can be extracted
by considering single or multiple modes. With a suitable choice of the effective action, the
equation of motion for the module ρj(φ) = |σj(φ)| can be solved approximately at a large
volume. We then used the solution (14) to investigate the behaviour of w and found that in
the two-mode case with an interaction of order six, at a large volume, w will first decrease,
cross the phantom divide w = −1, and then increase, coming close to its asymptotic value
w = −1 from below. Furthermore, in our model, w approaches w = −1 fast enough; hence,
we will obtain a de Sitter spacetime asymptotically without encountering singularities.

Even though at this stage, it is hard for our model to be connected with cosmological
observations, such as the CMB data, there is still some progress along this direction. For
example, the inhomogeneities over the FLRW background can be viewed as perturbations
over GFT condensates. The power spectrum of the fluctuations are scale invariant to the
leading order [31], as one would expect. The dynamics of the scalar perturbations can also
be obtained from the underlying quantum gravity effects [32]. Many efforts are certainly
needed in these directions.
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